Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2021

Observational evidence of the excitation of magnetosonic waves by an He ion ring distribution

Abstract We report plasma wave observations of equatorial magnetosonic waves at integer harmonics of the local gyrofrequency of doubly-ionized helium (He). The waves were observed by Van Allen Probe A on 08 Feb 2014 when the spacecraft was in the afternoon magnetic local time sector near inside of the plasmasphere. Analysis of the complementary in-situ energetic ion measurements (1-300 keV) reveals the presence of a helium ion ring distribution centered near 30 keV. Theoretical linear growth rate calculations suggest that the local plasma and field conditions can support the excitation of the magnetosonic waves from the unstable ring distribution. This represents the first report of the generation of magnetosonic equatorial noise via a ring distribution in energetic He ions in the near-Earth space plasma environment.

Claudepierre, S.; Liu, X.; Chen, L.; Takahashi, K.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029532

magnetosonic waves; ion Bernstein waves; ring distribution; alpha particles; Plasma instability; ring current; Van Allen Probes

2017

Low-energy (< 200 eV) electron acceleration by ULF waves in the plasmaspheric boundary layer: Van Allen Probes observation

We report observational evidence of cold plamsmaspheric electron (< 200 eV) acceleration by ultra-low-frequency (ULF) waves in the plasmaspheric boundary layer on 10 September 2015. Strongly enhanced cold electron fluxes in the energy spectrogram were observed along with second harmonic mode waves with a period of about 1 minute which lasted several hours during two consecutive Van Allen Probe B orbits. Cold electron (<200 eV) and energetic proton (10-20 keV) bi-directional pitch angle signatures observed during the event are suggestive of the drift-bounce resonance mechanism. The correlation between enhanced energy fluxes and ULF waves leads to the conclusions that plasmaspheric dynamics is strongly affected by ULF waves. Van Allen Probe A and B, GOES 13, GOES 15 and MMS 1 observations suggest ULF waves in the event were strongest on the dusk-side magnetosphere. Measurements from MMS 1 contain no evidence of an external wave source during the period when ULF waves and injected energetic protons with a bump-on-tail distribution were detected by Van Allen Probe B. This suggests that the observed ULF waves were probably excited by a localized drift-bounce resonant instability, with the free energy supplied by substorm-injected energetic protons. The observations by Van Allen Probe B suggest that energy transfer between particle species in different energy ranges can take place through the action of ULF waves, demonstrating the important role of these waves in the dynamical processes of the inner magnetosphere.

Ren, Jie; Zong, Q.; Miyoshi, Y.; Zhou, X.; Wang, Y.; Rankin, R.; Yue, C.; Spence, H.; Funsten, H.; Wygant, J.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024316

Cold plasmaspheric electrons; drift-bounce resonance; Plasma instability; Plasmaspheric boundary layer; Substorm-injected protons; ULF waves; Van Allen Probes



  1